Bruce Schneier
There are two kinds of cryptography in this world: cryptography that will stop your kid sister from reading your files, and cryptography that will stop major governments from reading your files. This book is about the latter.
If I take a letter, lock it in a safe, hide the safe somewhere in New York, then tell you to read the letter, that’s not security. That’s obscurity. On the other hand, if I take a letter and lock it in a safe, and then give you the safe along with the design specifications of the safe and a hundred identical safes with their combinations so that you and the world’s best safecrackers can study the locking mechanism—and you still can’t open the safe and read the letter—that’s security.
For many years, this sort of cryptography was the exclusive domain of the military. The United States’ National Security Agency (NSA), and its counterparts in the former Soviet Union, England, France, Israel, and elsewhere, have spent billions of dollars in the very serious game of securing their own communications while trying to break everyone else’s. Private individuals, with far less expertise and budget, have been powerless to protect their own privacy against these governments.
During the last 20 years, public academic research in cryptography has exploded. While classical cryptography has been long used by ordinary citizens, computer cryptography was the exclusive domain of the world’s militaries since World War II. Today, state–of–the–art computer cryptography is practiced outside the secured walls of the military agencies. The layperson can now employ security practices that can protect against the most powerful of adversaries—security that may protect against military agencies for years to come.
Do average people really need this kind of security? Yes. They may be planning a political campaign, discussing taxes, or having an illicit affair. They may be designing a new product, discussing a marketing strategy, or planning a hostile business takeover. Or they may be living in a country that does not respect the rights of privacy of its citizens. They may be doing something that they feel shouldn’t be illegal, but is. For whatever reason, the data and communications are personal, private, and no one else’s business.
comment: As far as politics are concerned, Bruce is quite naive: He still doesn't get it, that nine eleven was an inside job, and he fell for the mainstream propaganda on Syria (Assad didn't use chemical weapons, the CIA sponsored Muslim terror groups did) and on the Ukraine (there are no Russian troops in the Ukraine, but CIA sponsored neo-nazis), but apart from those forgivable flaws, his understanding of the methods of professional intelligence gathering is quite exceptional.
Bruce Schneier
Description
There are two kinds of cryptography in this world: cryptography that will stop your kid sister from reading your files, and cryptography that will stop major governments from reading your files. This book is about the latter.
If I take a letter, lock it in a safe, hide the safe somewhere in New York, then tell you to read the letter, that’s not security. That’s obscurity. On the other hand, if I take a letter and lock it in a safe, and then give you the safe along with the design specifications of the safe and a hundred identical safes with their combinations so that you and the world’s best safecrackers can study the locking mechanism—and you still can’t open the safe and read the letter—that’s security.
For many years, this sort of cryptography was the exclusive domain of the military. The United States’ National Security Agency (NSA), and its counterparts in the former Soviet Union, England, France, Israel, and elsewhere, have spent billions of dollars in the very serious game of securing their own communications while trying to break everyone else’s. Private individuals, with far less expertise and budget, have been powerless to protect their own privacy against these governments.
During the last 20 years, public academic research in cryptography has exploded. While classical cryptography has been long used by ordinary citizens, computer cryptography was the exclusive domain of the world’s militaries since World War II. Today, state–of–the–art computer cryptography is practiced outside the secured walls of the military agencies. The layperson can now employ security practices that can protect against the most powerful of adversaries—security that may protect against military agencies for years to come.
Do average people really need this kind of security? Yes. They may be planning a political campaign, discussing taxes, or having an illicit affair. They may be designing a new product, discussing a marketing strategy, or planning a hostile business takeover. Or they may be living in a country that does not respect the rights of privacy of its citizens. They may be doing something that they feel shouldn’t be illegal, but is. For whatever reason, the data and communications are personal, private, and no one else’s business.
comment: As far as politics are concerned, Bruce is quite naive: He still doesn't get it, that nine eleven was an inside job, and he fell for the mainstream propaganda on Syria (Assad didn't use chemical weapons, the CIA sponsored Muslim terror groups did) and on the Ukraine (there are no Russian troops in the Ukraine, but CIA sponsored neo-nazis), but apart from those forgivable flaws, his understanding of the methods of professional intelligence gathering is quite exceptional.
Harvard's CRCS - The NSA, Snowden and Surveillance (CRCS Lunch Seminar)
The future of the security Industry - Bruce Schneier
Snowden, the NSA and Free Software - Bruce Schneier & Eben Moglen
BerkmanCenter - Bruce Schneier & Jonathan Zittrain on IT, Security and Power
Surveillance Technology - Inventing the Future
Bruce Schneier - Enabling the Trust that Makes Society Function - FHI Oxford Winter Intelligence
NSA Surveillance and What to Do About It - Bruce Schneier
Talks @ Google with Bruce Schneier
ShmooCon 2014 - The NSA _ Capabilities and Countermeasures
BlackHat EU 2011 - Keynote with Bruce Schneier